Posts tagged: decision makers

11 Ways Humans Kill Good Analysis

Failure to CommunicateIn my last post, I talked about the immense value of FAME in analysis (Focused, Actionable, Manageable and Enlightening). Some of the comments on the post and many of the email conversations I had regarding the post sparked some great discussions about the difficulties in achieving FAME. Initially, the focus of those discussions centered on the roles executives, managers and other decisions makers play in the final quality of the analysis, and I was originally planning to dedicate this post to ideas decision makers can use to improve the quality of the analyses they get.

But the more I thought about it, the more I realized that many of the reasons we aren’t happy with the results of the analyses come down to fundamental disconnects in human relations between all parties involved.

Groups of people with disparate backgrounds, training and experiences gather in a room to “review the numbers.” We each bring our own sets of assumptions, biases and expectations, and we generally fail to establish common sets of understanding before digging in. It’s the type of Communication Illusion I’ve written about previously. And that failure to communicate tends to kill a lot of good analyses.

Establishing common understanding around a few key areas of focus can go a long way towards facilitating better communication around analyses and consequently developing better plans of action to address the findings.

Here’s a list of 11 key ways to stop killing good analyses:

  1. Begin in the beginning. Hire analysts not reporters.
    This isn’t a slam on reporters, it’s just recognition that the mindset and skill set needed for gathering and reporting on data is different from the mindset and skill set required for analyzing that data and turning it into valuable business insight. To be sure, there are people who can do both. But it’s a mistake to assume these skill sets can always be found in the same person. Reporters need strong left-brain orientation and analysts need more of a balance between the “just the facts” left brain and the more creative right brain. Reporters ensure the data is complete and of high quality; analysts creatively examine loads of data to extract valuable insight. Finding someone with the right skill sets might cost more in payroll dollars, but my experience says they’re worth every penny in the value they bring to the organization.
  2. Don’t turn analysts into reporters.
    This one happens all too often. We hire brilliant analysts and then ask them to spend all of their time pulling and formatting reports so that we can do our own analysis. Everyone’s time is misused at best and wasted at worst. I think this type of thing is a result of the miscommunication as much as a cause of it. When we get an analysis we’re unhappy with, we “solve” the problem by just doing it ourselves rather than use those moments as opportunities to get on the same page with each other. Web Analytics Demystified‘s Eric Peterson is always saying analytics is an art as much as it is a science, and that can mean there are multiple ways to get to findings. Talking about what’s effective and what’s not is critical to our ultimate success. Getting to great analysis is definitely an iterative process.
  3. Don’t expect perfection; get comfortable with some ambiguity
    When we decide to be “data-driven,” we seem to assume that the data is going to provide perfect answers to our most difficult problems. But perfect data is about as common as perfect people. And the chances of getting perfect data decrease as the volume of data increases. We remember from our statistics classes that larger sample sizes mean more accurate statistics, but “more accurate” and “perfect” are not the same (and more about statistics later in this list). My friend Tim Wilson recently posted an excellent article on why data doesn’t match and why we shouldn’t be concerned. I highly recommend a quick read. The reality is we don’t need perfect data to produce highly valuable insight, but an expectation of perfection will quickly derail excellent analysis. To be clear, though, this doesn’t mean we shouldn’t try as hard as we can to use great tools, excellent methodologies and proper data cleansing to ensure we are working from high quality data sets. We just shouldn’t blow off an entire analysis because there is some ambiguity in the results. Unrealistic expectations are killers.
  4. Be extremely clear about assumptions and objectives. Don’t leave things unspoken.
    Mismatched assumptions are at the heart of most miscommunications regarding just about anything, but they can be a killer in many analyses. Per item #3, we need to start with the assumption that the data won’t be perfect. But then we need to be really clear with all involved what we’re assuming we’re going to learn and what we’re trying to do with those learnings. It’s extremely important that the analysts are well aware of the business goals and objectives, and they need to be very clearly about why they’re being asked for the analysis and what’s going to be done with it. It’s also extremely important that the decision makers are aware of the capabilities of the tools and the quality of the data so they know if their expectations are realistic.
  5. Resist numbers for number’s sake
    Man, we love our numbers in retail. If it’s trackable, we want to know about it. And on the web, just about everything is trackable. But I’ll argue that too much data is actually worse than no data at all. We can’t manage what we don’t measure, but we also can’t manage everything that is measurable. We need to determine which metrics are truly making a difference in our businesses (which is no small task) and then focus ourselves and our teams relentlessly on understanding and driving those metrics. Our analyses should always focus around those key measures of our businesses and not simply report hundreds (or thousands) of different numbers in the hopes that somehow they’ll all tie together into some sort of magic bullet.
  6. Resist simplicity for simplicity’s sake
    Why do we seem to be on an endless quest to measure our businesses in the simplest possible manner? Don’t get me wrong. I understand the appeal of simplicity, especially when you have to communicate up the corporate ladder. While the allure of a simple metric is strong, I fear overly simplified metrics are not useful. Our businesses are complex. Our websites are complex. Our customers are complex. The combination of the three is incredibly complex. If we create a metric that’s easy to calculate but not reliable, we run the risk of endless amounts of analysis trying to manage to a metric that doesn’t actually have a cause-and-effect relationship with our financial success. Great metrics might require more complicated analyses, but accurate, actionable information is worth a bit of complexity. And quality metrics based on complex analyses can still be expressed simply.
  7. Get comfortable with probabilities and ranges
    When we’re dealing with future uncertainties like forecasts or ROI calculations, we are kidding ourselves when we settle on specific numbers. Yet we do it all the time. One of my favorite books last year was called “Why Can’t You Just Give Me the Number?” The author, Patrick Leach, wrote the book specifically for executives who consistently ask that question. I highly recommend a read. Analysts and decision makers alike need to understand the of pros and cons of averages and using them in particular situations, particularly when stacking them on top of each other. Just the first chapter of the book Flaw of Averages does an excellent job explaining the general problems.
  8. Be multilingual
    Decision makers should brush up on basic statistics. I don’t think it’s necessary to re-learn all the formulas, but it’s definitely important to remember all the nuances of statistics. As time has passed from our initial statistics classes, we tend to forget about properly selected samples, standard deviations and such, and we just remember that you can believe the numbers. But we can’t just believe any old number. All those intricacies matter. Numbers don’t lie, but people lie, misuse and misread numbers on a regular basis. A basic understanding of statistics can not only help mitigate those concerns, but on a more positive note it can also help decision makers and analysts get to the truth more quickly.

    Analysts should learn the language of the business and work hard to better understand the nuances of the businesses of the decision makers. It’s important to understand the daily pressures decision makers face to ensure the analysis is truly of value. It’s also important to understand the language of each decision maker to shortcut understanding of the analysis by presenting it in terms immediately identifiable to the audience. This sounds obvious, I suppose, but I’ve heard way too many analyses that are presented in “analyst-speak” and go right over the heard of the audience.

  9. Faster is not necessarily better
    We have tons of data in real time, so the temptation is to start getting a read almost immediately on any new strategic implementation, promotion, etc. Resist the temptation! I wrote a post a while back comparing this type of real time analysis to some of the silliness that occurs on 24-hour news networks. Getting results back quickly is good, but not at the expense of accuracy. We have to strike the right balance to ensure we don’t spin our wheels in the wrong direction by reacting to very incomplete data.
  10. Don’t ignore the gut
    Some people will probably vehemently disagree with me on this one, but when an experienced person says something in his or her gut says something is wrong with the data, we shouldn’t ignore it. As we stated in #3, the data we’re working from is not perfect so “gut checks” are not completely out of order. Our unconscious or hidden brains are more powerful and more correct than we often give them credit for. Many of our past learnings remain lurking in our brains and tend to surface as emotions and gut reactions. They’re not always right, for sure, but that doesn’t mean they should be ignored. If someone’s gut says something is wrong, we should at the very least take another honest look at the results. We might be very happy we did.
  11. Presentation matters a lot.
    Last but certainly not least, how the analysis is presented can make or break its success. Everything from how slides are laid out to how we walk through the findings matter. It’s critically important to remember that analysts are WAY closer to the data than everyone else. The audience needs to be carefully walked through the analysis, and analysts should show their work (like math proofs in school). It’s all about persuading the audience and proving a case and every point prior to this one comes into play.

The wealth and complexity of data we have to run our businesses is often a luxury and sometimes a curse. In the end, the data doesn’t make our businesses decisions. People do. And we have to acknowledge and overcome some of our basic human interaction issues in order to fully leverage the value of our masses of data to make the right data-driven decisions for our businesses.

What do you think? Where do you differ? What else can we do?

How to achieve FAME in analysis

focused handsIn retail, and in web retail in particular, we are drowning in data. We can and do track just about everything, and we’re constantly pouring over the numbers. But I sometimes worry that the abundance of data is so overwhelming that it often leads to a shortage of insight. All that data is worthless (or worse) if we don’t produce thoughtful analysis and then carefully craft communication of our findings in ways that enable decision makers to react to the data rather than try to analyze it themselves.

The most effective analyses I’ve seen have remarkably similar attributes, and they happen to work into a nice, easy-to-remember acronym — F.A.M.E.

Here, in my experience, are the keys to achieving FAME in analysis:


Any finding should be fact based and clear enough that it can be stated in a succinct format similar to a newspaper headline. It’s OK to augment the main headline with a sub-headline that adds further clarification, but anything more complicated is not nearly focused enough to be an effective finding.

For example, an effective finding might be, “Visitors arriving from Google search terms are converting 23% lower than visitors arriving from email.” An accompanying sub-heading might further clarify the statement with something like, “Unclear value proposition, irrelevant landing pages and high first time visitor counts are contributing factors.”

All subsequent data presented should support these headlines. Any data that is interesting but irrelevant to the finding should be excluded from the analysis. In other words, remove the clutter so the main points are as clear as possible.


Effective findings and their accompanying recommendations are specific enough in focus and narrow enough in scope that decision makers can reasonably develop a plan of action to address them. The finding mentioned above regarding Google search visitors fits the bill, and a recommendation that focuses on modifying landing pages to match search terms would be appropriate. Less appropriate would be a vague finding like “customers coming from Google search terms are viewing more pages than customers coming from email campaigns” accompanied by an equally vague recommendation to “consider ways to reduce pages clicked by Google search campaign visitors.” Is viewing more pages good or bad? Why? The recommendation in this case insinuates that it’s bad, but it’s not clear why. What’s the benefit of taking action in quantifiable terms?

Truly actionable analysis doesn’t burden decision makers with connecting the data to executable conclusions. In other words, the thought put into the analysis should make the diagnosis of problems clear so that decision makers can get to work on determining necessary solutions.


The number of findings in any set of analyses should be contained enough that the analyst and anyone in the audience can recite the findings and recommendations (but not all the supporting details) in 30 seconds. Sometimes, less is more. This constraint helps ease the subsequent communication that will be necessary to reasonably react to the findings and plan and execute a response. Conversely, information overload obscures key messages and makes it difficult for teams to coalesce around key issues.


Last, but most certainly not least, effective findings are enlightening. Effective analyses should present — and support with clear, credible data — a view of the business that is not widely held. They should, at the very least, elicit a “hmmm…” from the audience and ideally a “whoa!” They should excite decision makers and spur them to action.


The FAME attributes are not always easy to achieve. They require a lot of hard thought, but the value of clear, data-supported insight to an organization is immense.

The most effective analysts I’ve seen achieve FAME on a regular basis. They have a thorough understanding of the business’ objectives, and they develop their insights to help decision makers truly understand what’s working and what’s not working. And then they lay out clear opportunities for improvement. That’s data-driven business management at its best.

What do you think? What attributes do you find key in effective analyses?

Retail: Shaken Not Stirred by Kevin Ertell

Home | About